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Time Series Analysis
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Time Series Analysis

Descriptive / Exploratory Tools
» Autocorrelation function (ACF)
» Cross-Correlation function (CCF)
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Time Series Analysis

James D. Hamilton

Descriptive / Exploratory Tools
» Autocorrelation function (ACF)
» Cross-Correlation function (CCF)

Models such as (V)ARIMA
> AR(1), AR(2), VAR(p)

» ACF & CCF to check / find
appropriate model
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Assumption: Equally Spaced Measurements
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Reality: lrregularly Spaced Measurements
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Continuous-Time Modeling

So far, people often suggest using Continuous-Time models

dy(t) _
5 =AY((t)+G

dW(t)
dt

In auto-regressive form, this looks like a VAR(1) model

Y(t+ At) = e®2LY(t) + ¢(At)

Auto- and cross-regressions are a specific non-linear function (matrix exponential e)
of the time-interval between measurements At.

» This model can be estimated, e.g., using the ctsem package (Driver et al. 2017)
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Problem: Model Misspecification

With a CT model, the auto- and cross- relations are derived based on the estimated
drift matrix A.

» Model-based estimate. Not (entirely) data-driven / exploratory

But this will only match reality if the (simple, low-D, linear) model is correctly
specified.

» If the order of the model (first vs second) is wrong, or if we have unobserved
confounding these will be incorrect






!
N

S0
é“”f



Effect Size

00 05 1.0

-1.0

ctsem estimation:

Autocorrelation

5 10 15 20 25 30
Time-Interval

model misspecified

Effect Size

00 05 1.0

-1.0

Cross—correlation

004 —— True
o :
o ctsem
‘o 95% quantiles
\

o]}

\o\ o° 09004
O. OU
o o
o] oo [}
T T T T 1
10 15 20 25 30

Time-Interval



Traditional ACF and CCF estimation:

> (relatively model-free) method for exploring
dynamic features

» Does not perform well with irregularly spaced data

CT model estimation:

» Can be estimated from irregularly spaced data and in principle capture non-linear
patterns of correlations

» But relies on unrealistic assumption of correct model specification, which likely
never holds in practice

> Kicker: without a data-driven way of computing correlations, no way to check the
model misspecification



expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

» Development version available github: ryanoisin/expct

Two-step procedure

1. Create a "stacked” data frame: Every observation acts as a predictor for every
future observation, with the time-interval At as additional variable


https://github.com/ryanoisin/expct/
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expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

» Development version available github: ryanoisin/expct

Two-step procedure

1. Create a “stacked” data frame: Every observation acts as a predictor for every
future observation, with the time-interval At as additional variable

2. Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and

cross-correlations
Y =f(At)X + €


https://github.com/ryanoisin/expct/

expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

» Development version available github: ryanoisin/expct

Two-step procedure
1. Create a “stacked” data frame: Every observation acts as a predictor for every
future observation, with the time-interval At as additional variable

2. Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and

cross-correlations
Y =f(At)X + €

Auto and cross-correlation functions are estimated for arbitrary At by fitting seperate
bivariate GAMMs. In this way we approximate

Cor(Yt, Yt+At) = f(At)


https://github.com/ryanoisin/expct/
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Simulation Study

Time-series length: [ 100, 500, 2000 ]
Sampling Scheme: [ Equal, “ESM" bimodal, Uniform |
Data-generating models: [ AR(1), Bivariate Oscillating, Misspecified ]

We also compared a number of different methods for computing confidence intervals:

» Point-wise, Simultaneous, Simultaneous + large lag error correction, Bootstrap

We use “function-wide" averages to compute bias, coverage, etc.
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Future work

In principle this method can be used in other situations than those studied here

» Systems of variables measured at different timescales (e.g., daily diary vs hourly
ratings vs minute-to-minute physiological measurements)

» Multi-subject low T data common in social sciences, if we assume shared ACF
and CCF

Extensions TBD:

» Multi-level multi-subject data (random effects, work underway)
» Partial relationships (PACF, PCCF)
» Empirical Examples



Extracting Dynamic Features from Irregularly Spaced Time Series

expct: Exploratory continuous-time modeling
» Available as an R package github: ryanoisin/expct

» Overcomes equal-interval limitation of traditional ACF/CCF estimation

» Avoids reliance on correct lagged model specification in confirmatory
continuous-time models

» ctsem, dynr

» GAMM-based, unbiased, good coverage with novel llci method
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