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Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the
population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically independent in the general population are
statistically dependent in a sub-population

Lord’s Paradox

The relationship between a categorical exposure and a continuous outcome is reversed
when we condition on a third variable

Confusing, but not a paradox

You’re asking a question that statistical inference alone is not equipped to answer
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Statistical inference in a nutshell

Estimand Estimator Estimate

Credit to Peter Tennant @PWGTennant
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Conditional Probabilities:
P (R = r|D = d, S = s)

10 / 46



Conditional Probabilities:

P (R = r|D = d, S = s)

11 / 46



Marginal Probabilities:

P (R = r|D = d)
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Statistical inference in a nutshell

Estimand Estimator Estimate

P (R = 1|D = 1, S = 0)
# Recovered takers Male / #

Drug takers Male .93

P (R = 1|D = 1)
# Recovered drug takers /

# Drug takers
.78
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What’s the paradox?

Two different sets of estimands yield two different sets of estimates

• No paradox there!

We are not interested in either of these estimands for their own sake

We are interested in a causal effect

• Does taking the drug cause recovery?

• Causal Estimand

• But we have no way of expressing this in the language of statistical inference
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Causal Inference



Causal Graphs

A causal graph is a diagram representing (our beliefs about) which variables share
causal relations with each other

• The arrow X → Y represents our belief that X
is a direct cause of Y

• We omit an arrow if expert knowledge tells us
that one variable does not directly cause
another. The absence of an arrow is a strong
statement X Y

Z

Directed Acyclic Graph (DAG) or Bayesian Network
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Why Causal Models?

This machinery is useful for three important and closely related reasons:

1 Causal models map causal dependencies onto statistical dependencies
• Regardless of distributions and functional forms

Causal models allow us to define causal effects in the language of interventions
and probabilities

Causal models tell us which when and how statistical estimands can act as causal
estimands
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Graphs and statistical dependencies
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Causal Effects

The do-operator do(X = x) represents a “surgical intervention”, forcing X to x.

We can use this to define our causal estimand

Causal Effect of Drug-Taking on Recovery:

CE = P [R | do(D = 1)]− P [R | do(D = 0)]

Inference problem: “Seeing” is not always the same as ”doing”

Observing 6= Intervening:

P [Y | X = x] is not generally the same as P [Y | do(X = x)]
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Two versions of the causal system

Observing

X Y

Z

Intervening

X Y

Z
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Statistical inference in a nutshell

Statistical
Estimand

Estimator Estimate

P (R = 1|D = 1, S = 1)
# Recovered takers Male / #

Drug takers Male .93

P (R = 1|D = 1)
# Recovered drug takers /

# Drug takers
.78
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Causal Inference in a nutshell

Causal
Estimand

Causal Model
Statistical
Estimand

P [R | do(D = 1)]−
P [R | do(D = 0)]

D R

S
P (R|D,S)

P (R|D)
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Post-Treatment Blood Pressure:

• Statistical information is exactly the same

• The drug works in part by decreasing blood
pressure

• We should not condition on blood pressure
D R

B

Example from Pearl, Glymour & Jewell, 2016
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Causal Inference in a nutshell

Causal
Estimand

Causal
Model

Statistical
Estimand

Estimator Estimate
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Simpsons Paradox

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the
population may be reversed or absent when looking at sub-populations

Absolutely not a paradox.

• Confusion comes from a lack of clarity regarding our causal estimand and causal
model

Statistical information alone cannot provide the answer

• Different DAGs can produce the exact same statistical dependencies in
observational data

Causal models provide immediate conceptual clarity

• Miguel Hernan: Draw your assumptions before your conclusions!
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Beyond Toy Examples



Causal Inference in Practice

Two broad frameworks for causal modeling

• Graphical Causal Models (Structural Causal Models)

• Potential Outcomes framework

Many tools available in these frameworks

• Causal Mediation analysis

• Cyclic Causal Models

• Instrumental Variables / Mendellian Randomization

• Synthetic Control & Interrupted Time Series

• “Target Trial” emulation
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Statistical vs Causal Learning

Statistical Learning / Machine Learning / “Data Science”

• Incredibly useful tools for learning certain kinds of representations of probability
densities

• Usually: Those that minimize out-of-sample prediction error. But this is actually
quite specific

• If I observe a new data point in exactly the same circumstances as I observed my
training set, what types of values are likely to (co-)occur?
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But is this what we actually want in most cases?

• Which treatment assignment would be best for this individual?

• What would happen if I change some policy, e.g., make more funding available for
after-school programs?

• How do I make decisions which avoid gender bias?

• How do I make sure my ML model doesn’t learn to classify data points based on
some “undesirable” factor?

I would argue that answering these questions requires us to learn a causal model, not a
purely statistical or predictive one
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Peters, Janzig, Scholkopf (2017) Elements of Causal Inference
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Conclusions



Inappropriate reliance on (advanced) statistical modeling or statistlcal learning
techniques, with no clear link to causal estimands or models

• Paradoxes, confusion, poor decisions result

Causal modeling can be powerful in reshaping how we approach statistical modeling

• Judea Pearl, Don Rubin, Jamie Robins, Miguel Hernan, Angrist & Imbens

• Controlling for as many variables as possible is an obviously terrible idea when
estimating causal effects

• Minimizing OOS PE / classification error does not in any obvious way licence
causal inferences (counterfactual predictions)

Researchers make causal inferences based on observational data all the time

• Better to be explicit and open about this so we can move forward
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Thanks!
(o.ryan@uu.nl | oisinryan.org)

45 / 46

o.ryan@uu.nl


Shameless plug

• Statistical network analysis as ad-hoc causal discovery (e.g. Ryan, Bringmann,
Schuurman, 2022)

• Causal models of dynamical systems from cross-sectional data (Ryan* &
Dablander*, pre-print 2022)

• Estimating the effect of a hypothetical language training program on study
success using administrative data. A pre-registered causal inference approach
(Spit, Andringa, Ryan. In-principle acceptance)

• Causal and statistical estimands (e.g. Haslbeck*, Ryan*, Dablander* 2021)

• Constructing theories (Haslbeck*, Ryan*, Robinaugh*, Waldorp, Borsboom, 2021)

• Synthetic Control and Interrupted Time Series with large-scale administrative data
(in progress)

• Causal Discovery of cyclic models (in progress)

• Teaching materials and workshops
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