What paradox?

 Causal Models and Statistical Confusion

 Causal Models and Statistical Confusion}

Oisín Ryan

Department of Methodology and Statistics
Faculty of Social Sciences
Utrecht University
April 7, 2022

Drug	No drug

	Drug	No drug
Male		
Female		

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

Should we prescribe the drug?

	Drug	No drug
Low Blood Pressure	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
High Blood Pressure	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

	Drug	No drug
Low Blood Pressure	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
High Blood Pressure	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

Should we prescribe the drug?

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically independent in the general population are statistically dependent in a sub-population

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically independent in the general population are statistically dependent in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically independent in the general population are statistically dependent in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Confusing, but not a paradox

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically independent in the general population are statistically dependent in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Confusing, but not a paradox

You're asking a question that statistics alone is not equipped to answer

Estimand Estimator Estimate

Estimand Estimator Estimate

Estimand
Estimator
Estimate

(1) Prepare Chocolate Cake Batter

Preheat oven to 350 degrees, and prepare Yo's uttimate Chocolate Cake batter. Prepare your pans
with parchment. Pour $2 / 2 / 2 \mathrm{lbs}$ into each 7^{*} round pan $11^{2 / 2} \mathrm{l}$ bs into your $5^{\prime \prime}$ round pan, and divide the remaining batter evenly between your 5 round pans.
(2) Bake Cakes

Bake your 7^{*} round cakes for 50 minutes. your 6° round cake for 40 minutes, and your 5 ' round
cakes for 30 minutes or until a toothpick comes out clean. Set aside to cool completely in their
pans on a wire rack.
(3) Prepare Fillings \& Simple Syrup

Prepare your dark chocolate ganache, Italian meringue buttercream, and simple syrup. Set aside
until you're ready to deccorate.
4. Level Cakes

Remove your cooled cakes from their pans and level them with a ruler and serrated knifo.

Estimand

Estimator

1) Prepare Chocolate Cake Batter

Freneat oven to 350 degrees, and prepare Yos Ulitimate Chocolate Cake batter. Prepare your pans with parchment. Pour $2 / 2 / 2 \mathrm{l}$ lbs into each 7^{*} round pan, $1 / 2 / 2 \mathrm{lbs}$ into your 5^{7} round pan, and divide the emaining batter evenly between your 5 round pans.
(2) Bake Cakes

Eake your 7° round cakes for 50 minutes. your $6^{\text {r }}$ round cake for 40 minutes, and your 5 ' round
takes for 30 minutes or until a toothpick comes out clean. Set aside to cool completely in their
pans on a wire rack.

3 Prepare Fillings \& Simple Syrup
Prepare your dark chocolate ganache, Italian meringue buttercream, and simple syrup. Set aside
until you'te ready to doccrate
4. Level Cakes

Removeyour cooled cakes from their pans and level them with a ruler and serrated knifo

Estimate

Credit to Peter Tennant @PWGTennant

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

Conditional Probabilities:

$$
P(R=r \mid D=d, S=s)
$$

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

Marginal Probabilities:

$$
P(R=r \mid D=d)
$$

Estimand
Estimator
Estimate

Estimand

$P(R=1 \mid D=1, S=0) \quad$ \# Recovered takers Male / \# $\begin{gathered}\text { Drug takers Male }\end{gathered}$

$$
\begin{array}{ccc}
\text { Estimand } & \text { Estimator } & \text { Estimate } \\
P(R=1 \mid D=1, S=0) & \text { \# Recovered takers Male } / \# & \\
& \text { Drug takers Male } & .93 \\
P(R=1 \mid D=1) & \text { \# Recovered drug takers } / & \\
\text { \# Drug takers } & .78
\end{array}
$$

Two different sets of estimands yield two different sets of estimates

- No paradox there!

Two different sets of estimands yield two different sets of estimates

- No paradox there!

We are not interested in either of these estimands for their own sake

Two different sets of estimands yield two different sets of estimates

- No paradox there!

We are not interested in either of these estimands for their own sake
We are interested in a causal effect

- Does taking the drug cause recovery?
- Causal Estimand
- But we have no way of expressing this in the language of statistics

Two different sets of estimands yield two different sets of estimates

- No paradox there!

We are not interested in either of these estimands for their own sake
We are interested in a causal effect

- Does taking the drug cause recovery?
- Causal Estimand
- But we have no way of expressing this in the language of statistics

Statistical estimand \leftarrow ? \rightarrow Causal Estimand

Causal Graphs

Causal Graphs

A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

Causal Graphs

A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

- The arrow $X \rightarrow Y$ represents our belief that X is a direct cause of Y
- We omit an arrow if expert knowledge tells us that one variable does not directly cause another. The absence of an arrow is a strong statement

Causal Graphs

A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

- The arrow $\mathrm{X} \rightarrow \mathrm{Y}$ represents our belief that X is a direct cause of Y
- We omit an arrow if expert knowledge tells us that one variable does not directly cause another. The absence of an arrow is a strong statement

Directed Acyclic Graph (DAG) or Bayesian Network

This machinery is useful for three important and closely related reasons:
(1) Causal models map causal dependencies onto statistical dependencies

- Regardless of distributions and functional forms

2 Causal models allow us to define causal effects in the language of interventions and probabilities
3 Causal models tell us which when and how statistical estimands can act as causal estimands

This machinery is useful for three important and closely related reasons:
(1) Causal models map causal dependencies onto statistical dependencies

- Regardless of distributions and functional forms

2 Causal models allow us to define causal effects in the language of interventions and probabilities
(3) Causal models tell us which when and how statistical estimands can act as causal estimands

Chain

X: Smoking
Z: Tar
Y: Cancer
$X \notin Y$
$\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$

Fork

X: Storks
Z: Environment
Y: Babies
$X \notin \quad Y$
$X \Perp Y \mid Z$

Collider

X: Attractiveness
Z: Being Single
Y: Intelligence
$X \Perp Y$
X 1 Y \| Z

This machinery is useful for three important and closely related reasons:
(1) Causal models map causal dependencies onto statistical dependencies

- Regardless of distributions and functional forms

2 Causal models allow us to define causal effects in the language of interventions and probabilities

3 Causal models tell us which when and how statistical estimands can act as causal estimands

The do-operator $d o(X=x)$ represents a "surgical intervention" to set the value of the variable X to a constant value x

- $d o(D=1)$ - the act of intervening such that everyone takes an aspirin

The do-operator $d o(X=x)$ represents a "surgical intervention" to set the value of the variable X to a constant value x

- do $(D=1)$ - the act of intervening such that everyone takes an aspirin

In the graph, a do- operation on X cuts-off all incoming ties

Two versions of the causal system

Observing

Intervening

We can use the do-operator to define our causal estimand

Causal Effect of Drug-Taking on Recovery:

$$
C E=P[R \mid d o(D=1)]-P[R \mid d o(D=0)]
$$

We can use the do-operator to define our causal estimand

Causal Effect of Drug-Taking on Recovery:

$$
C E=P[R \mid d o(D=1)]-P[R \mid \operatorname{do}(D=0)]
$$

Inference problem: "Seeing" is not always the same as "doing"

Observing \neq Intervening:

$$
P[Y \mid X=x] \text { is not generally the same as } P[Y \mid d o(X=x)]
$$

This machinery is useful for three important and closely related reasons:
(1) Causal models map causal dependencies onto statistical dependencies

- Regardless of distributions and functional forms

2 Causal models allow us to define causal effects in the language of interventions and probabilities
3 Causal models tell us which when and how statistical estimands can act as causal estimands

Chain

X: Smoking
Z: Tar
Y: Cancer
$X \notin Y$
$\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}$

Fork

X: Storks
Z: Environment
Y: Babies
$X \notin \quad Y$
$X \Perp Y \mid Z$

Collider

X: Attractiveness
Z: Being Single
Y: Intelligence
$X \Perp Y$
X 1 Y \| Z

Two versions of the causal system

Observing

Intervening

Statistical
Estimand

Estimator

1) Prepare Chocolate Cake Batter

phear oven to 350 degrees, and prepare Yos Ultimate Chocolate Cake batter.-Prepare your pans (1) parchen. Pour 2 汭llbs into each 7° round pan. $11 / 2 \mathrm{lbs}$ into your $5^{\prime \prime}$ tound pan, and divide the remaining batter evenly between your 5 round pans.
(2) Bake Cakes

Qake your 7° round cakes for 50 minutes, your 6^{*} round cake for 40 minutes, and your 5° round
takes for 30 minutes or until a toothpick comes out clean. Set aside to cool completely in their pans on a wire rack.

3 Prepare Fillings \& Simple Syrup
Prepare your dark chocolate ganache, Italian meringue buttercream, and simple syrup. Set aside
until you'te ready to decorate
(4) Level Cakes

Removeyour cooled cakes from their pans and lovel them with a ruler and serrated knife.

Estimate

Causal	Causal	Statistical	Estimator	Estimate
Estimand	Model	Estimand		

Causal	Causal
Estimand	Model

Statistical Estimand

Estimator

Estimate

	Drug	No drug
Male	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
Female	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

Statistical
Estimand

$$
\left.\begin{array}{ccc}
P(R=1 \mid D=1, S=1) & \text { \# Recovered takers Male / \# } \\
\text { Drug takers Male }
\end{array}\right] .93
$$

Estimator

Estimate 9378

Causal

Estimand

$$
\begin{aligned}
& P[R \mid d o(D=1)]- \\
& P[R \mid d o(D=0)]
\end{aligned}
$$

Causal Model

Statistical

Estimand
$P(R \mid D, S)$
$P(R \mid D)$

Causal

Estimand

$$
\begin{aligned}
& P[R \mid d o(D=1)]- \\
& P[R \mid d o(D=0)]
\end{aligned}
$$

Causal Model

Statistical

Estimand
$P(R \mid D, S)$
$P(R \mid D)$

Simpsons Paradox

Post-Treatment Blood Pressure:

- Statistical information is exactly the same
- The drug works in part by decreasing blood pressure
- We should not condition on blood pressure

	Drug	No drug
Low Blood Pressure	81 out of 87 recovered (93\%)	234 out of 270 recovered (87\%)
High Blood Pressure	192 out of 263 recovered (73\%)	55 out of 80 recovered (69\%)
Combined data	273 out of 350 recovered (78\%)	289 out of 350 recovered (83\%)

Simpsons Paradox

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Absolutely not a paradox.

- Confusion comes from a lack of clarity regarding our causal estimand and causal model

Statistical information alone cannot provide the answer

- Different DAGs can produce the exact same statistical dependencies in observational data

Causal models provide immediate conceptual clarity

- Miguel Hernan: Draw your assumptions before your conclusions!

Inappropriate reliance on (advanced) statistical modeling with no clear link to causal estimands or models

- Paradoxes and confusion result. Machine learning is no solution

Causal modeling can be powerful in reshaping how we approach statistical modeling

- Judea Pearl, Don Rubin, Jamie Robins, Miguel Hernan, Angrist \& Imbens
- Example: Controlling for as many variables as possible is an obviously terrible idea when estimating causal effects

Researchers make causal inferences based on observational data all the time

- Better to be explicit and open about this so we can move forward

Thanks!
(o.ryan@uu.nl | oisinryan.org)

My own research focuses on using these ideas to improve psychological and social science research

- Causal discovery (e.g. Ryan, Bringmann, Schuurman, in press)
- Causal estimands (e.g. Haslbeck*, Ryan*, Dablander* 2021)
- Constructing theories (Haslbeck*, Ryan*, Robinaugh*, Waldorp, Borsboom, 2021)
- Applications of causal inference (forthcoming)

Berksons Paradox

Two phenomena which are statistically independent in the general population are statistically dependent in a sub-population

Classic example: We are interested in the relationship between Lung Cancer (L) and Diabetes (D)

- General population, these two variables are independent.
- In a sample of hospital patients, there is a negative dependency - patients who don't have diabetes are more likely to have lung cancer.

- Lung cancer L and diabetes D cause hospitalization H
- By taking participants from a hospital we condition on hospitalization $(H=1)$
- If you are hospitalised, and you don't have diabetes, probably you do have lung cancer (Otherwise - why would you be in hospital?).
- $P(D \mid L=1, H=1) \neq P(D \mid d o(L)=1)$
- We have conditioned on a collider

Collider Bias

Marginal relatioship L and D

Collider Bias

Relationship L and D conditional on $\mathrm{H}=1$

