What paradox?

Causal Models and Statistical Confusion

Oisín Ryan

Department of Methodology and Statistics Faculty of Social Sciences Utrecht University

April 7, 2022

Drug	No drug

Drug		No drug		
Male			· v	
Female				

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female Combined data	192 out of 263 recovered (73%) 273 out of 350 recovered (78%)	55 out of 80 recovered (69%) 289 out of 350 recovered (83%)

Should we prescribe the drug?

	Drug	No drug
Low Blood Pressure High Blood Pressure	81 out of 87 recovered (93%) 192 out of 263 recovered (73%)	234 out of 270 recovered (87%) 55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

	Drug	No drug
Low Blood Pressure	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
High Blood Pressure	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

Should we prescribe the drug?

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically *independent* in the general population are statistically *dependent* in a sub-population

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically *independent* in the general population are statistically *dependent* in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically *independent* in the general population are statistically *dependent* in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Confusing, but not a paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Berksons Paradox

Two phenomena which are statistically *independent* in the general population are statistically *dependent* in a sub-population

Lord's Paradox

The relationship between a categorical exposure and a continuous outcome is reversed when we condition on a third variable

Confusing, but not a paradox

You're asking a question that statistics alone is not equipped to answer

Estimand Estimator Estimate

Estimand Estimator Estimate

Estimand

Estimator

Estimate

Estimand

Estimator

Estimate

Credit to Peter Tennant @PWGTennant

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female Combined data	192 out of 263 recovered (73%) 273 out of 350 recovered (78%)	55 out of 80 recovered (69%) 289 out of 350 recovered (83%)

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

Conditional Probabilities:

$$P(R=r|D=d,S=s)$$

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female Combined data	192 out of 263 recovered (73%) 273 out of 350 recovered (78%)	55 out of 80 recovered (69%) 289 out of 350 recovered (83%)

Marginal Probabilities:

$$P(R=r|D=d)$$

Estimator Estimate

Estimand	Estimator	Estimate
P(R = 1 D = 1, S = 0)	# Recovered takers Male / # Drug takers Male	.93

Estimand	Estimator	Estimate
P(R = 1 D = 1, S = 0)	# Recovered takers Male / # Drug takers Male	.93
P(R=1 D=1)	# Recovered drug takers / # Drug takers	.78

Two different sets of estimands yield two different sets of estimates

• No paradox there!

Two different sets of **estimands** yield two different sets of **estimates**

• No paradox there!

We are not interested in either of these estimands for their own sake

Two different sets of estimands yield two different sets of estimates

• No paradox there!

We are not interested in either of these estimands for their own sake

We are interested in a causal effect

- Does taking the drug cause recovery?
- Causal Estimand
- But we have no way of expressing this in the language of statistics

Two different sets of estimands yield two different sets of estimates

• No paradox there!

We are not interested in either of these estimands for their own sake

We are interested in a causal effect

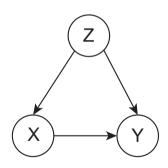
- Does taking the drug cause recovery?
- Causal Estimand
- But we have no way of expressing this in the language of statistics

Statistical estimand \leftarrow ? \rightarrow Causal Estimand

A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

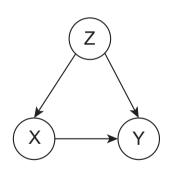
A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

- The arrow $X \to Y$ represents our belief that X is a direct cause of Y
- We omit an arrow if expert knowledge tells us that one variable does not directly cause another. The absence of an arrow is a strong statement



A causal graph is a diagram representing (our beliefs about) which variables share causal relations with each other

- The arrow $X \to Y$ represents our belief that X is a direct cause of Y
- We omit an arrow if expert knowledge tells us that one variable does not directly cause another. The absence of an arrow is a strong statement



Directed Acyclic Graph (DAG) or Bayesian Network

Why Causal Models?

This machinery is useful for three important and closely related reasons:

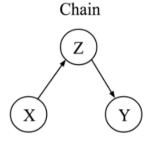
- 1 Causal models map causal dependencies onto statistical dependencies
 - Regardless of distributions and functional forms
- 2 Causal models allow us to define causal effects in the language of interventions and probabilities
- 3 Causal models tell us which when and how statistical estimands can act as causal estimands

Why SCMs?

This machinery is useful for three important and closely related reasons:

- 1 Causal models map causal dependencies onto statistical dependencies
 - Regardless of distributions and functional forms
- 2 Causal models allow us to define causal effects in the language of interventions and probabilities
- 3 Causal models tell us which when and how statistical estimands can act as causal estimands

3 fundamental graphical structures

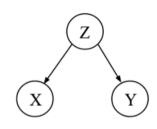


X: Smoking Z: Tar

Y: Cancer

 $X \not\perp\!\!\!\perp Y$ $X \perp\!\!\!\perp Y \mid Z$

Fork



X: Storks

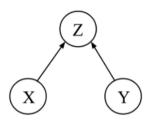
Z: Environment

Y: Babies

 $X \not\perp\!\!\!\perp Y$

 $X \perp \!\!\! \perp Y \mid Z$

Collider



X: Attractiveness

Z: Being Single

Y: Intelligence

 $X \perp \!\!\! \perp Y$

 $X \not\perp\!\!\!\perp Y \mid Z$

Why SCMs?

This machinery is useful for three important and closely related reasons:

- 1 Causal models map causal dependencies onto statistical dependencies
 - Regardless of distributions and functional forms
- 2 Causal models allow us to define causal effects in the language of interventions and probabilities
- 3 Causal models tell us which when and how statistical estimands can act as causal estimands

Causal Effects in SCMs

The **do-operator** do(X=x) represents a "surgical intervention" to set the value of the variable X to a constant value x

• do(D=1) - the act of intervening such that everyone takes an aspirin

Causal Effects in SCMs

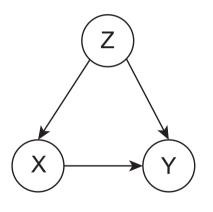
The **do-operator** do(X=x) represents a "surgical intervention" to set the value of the variable X to a constant value x

• do(D=1) - the act of intervening such that everyone takes an aspirin

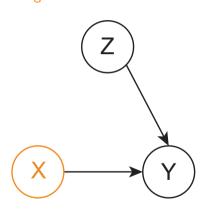
In the graph, a do- operation on X cuts-off all incoming ties

Two versions of the causal system

Observing



Intervening



Causal Effects in SCMs

We can use the do-operator to define our causal estimand

Causal Effect of Drug-Taking on Recovery:

$$CE = P[R \mid do(D=1)] - P[R \mid do(D=0)]$$

Causal Effects in SCMs

We can use the do-operator to define our causal estimand

Causal Effect of Drug-Taking on Recovery:

$$CE = P[R \mid do(D = 1)] - P[R \mid do(D = 0)]$$

Inference problem: "Seeing" is not always the same as "doing"

Observing \neq Intervening:

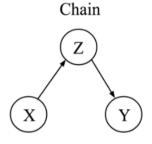
$$P[Y \mid X = x]$$
 is not **generally** the same as $P[Y \mid do(X = x)]$

Why SCMs?

This machinery is useful for three important and closely related reasons:

- 1 Causal models map causal dependencies onto statistical dependencies
 - Regardless of distributions and functional forms
- 2 Causal models allow us to define causal effects in the language of interventions and probabilities
- 3 Causal models tell us which when and how statistical estimands can act as causal estimands

3 fundamental graphical structures

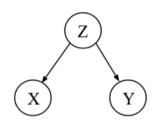


X: Smoking Z: Tar

Y: Cancer

 $X \not\perp\!\!\!\perp Y$ $X \perp\!\!\!\perp Y \mid Z$

Fork



X: Storks

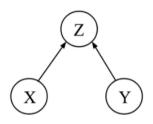
Z: Environment

Y: Babies

 $X \not\perp\!\!\!\perp Y$

 $X \perp \!\!\! \perp Y \mid Z$

Collider



X: Attractiveness

Z: Being Single

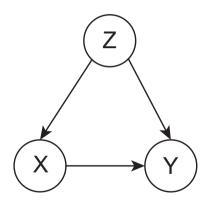
Y: Intelligence

Х Д Ү

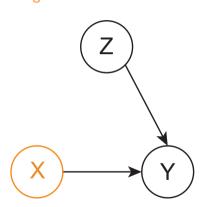
 $X \not\perp\!\!\!\perp Y \mid Z$

Two versions of the causal system

Observing



Intervening



Statistical Estimand

Estimator

Estimate

Causal Inference in a nutshell

Causal	Causal	Statistical	Estimator	Estimate
Estimand	Model	Estimand		

Causal Inference in a nutshell

Causal **Estimand**

Causal **Statistical** Model **Estimand**

Estimator

Estimate

	Drug	No drug
Male	81 out of 87 recovered (93%)	234 out of 270 recovered (87%)
Female	192 out of 263 recovered (73%)	55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

Statistics in a nutshell

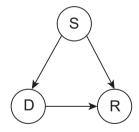
Statistical Estimand	Estimator	Estimate
P(R = 1 D = 1, S = 1)	# Recovered takers Male / # Drug takers Male	.93
P(R=1 D=1)	# Recovered drug takers / # Drug takers	.78

Causal Inference in a nutshell

Causal Estimand

$$P[R \mid do(D=1)] - P[R \mid do(D=0)]$$

Causal Model



Statistical Estimand

Causal Inference in a nutshell

Causal Estimand

$$P[R \mid do(D=1)] - P[R \mid do(D=0)]$$

Causal Model



Statistical Estimand

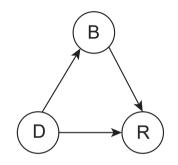
$$P(R|D,S)$$

$$\frac{P(R|D)}{P(R|D)}$$

Simpsons Paradox

Post-Treatment Blood Pressure:

- Statistical information is exactly the same
- The drug works in part by decreasing blood pressure
- We should **not** condition on blood pressure



	Drug	No drug
Low Blood Pressure High Blood Pressure	81 out of 87 recovered (93%) 192 out of 263 recovered (73%)	234 out of 270 recovered (87%) 55 out of 80 recovered (69%)
Combined data	273 out of 350 recovered (78%)	289 out of 350 recovered (83%)

Simpsons Paradox

Simpsons Paradox

Statistical phenomena where a relationship which is present when aggregating over the population may be reversed or absent when looking at sub-populations

Absolutely not a paradox.

Confusion comes from a lack of clarity regarding our causal estimand and causal model

Statistical information alone cannot provide the answer

 Different DAGs can produce the exact same statistical dependencies in observational data

Causal models provide immediate conceptual clarity

Miguel Hernan: Draw your assumptions before your conclusions!

Conclusions

Inappropriate reliance on (advanced) statistical modeling with no clear link to causal estimands or models

• Paradoxes and confusion result. Machine learning is no solution

Causal modeling can be powerful in reshaping how we approach statistical modeling

- Judea Pearl, Don Rubin, Jamie Robins, Miguel Hernan, Angrist & Imbens
- Example: Controlling for as many variables as possible is **an obviously terrible idea** when estimating causal effects

Researchers make causal inferences based on observational data all the time

• Better to be explicit and open about this so we can move forward

Thanks! (o.ryan@uu.nl | oisinryan.org)

Shameless plug

My own research focuses on using these ideas to improve psychological and social science research

- Causal discovery (e.g. Ryan, Bringmann, Schuurman, in press)
- Causal estimands (e.g. Haslbeck*, Ryan*, Dablander* 2021)
- Constructing theories (Haslbeck*, Ryan*, Robinaugh*, Waldorp, Borsboom, 2021)
- Applications of causal inference (forthcoming)

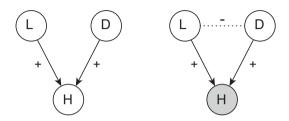
Berksons Paradox

Two phenomena which are statistically *independent* in the general population are statistically *dependent* in a sub-population

Classic example: We are interested in the relationship between $Lung\ Cancer\ (L)$ and $Diabetes\ (D)$

- General population, these two variables are independent.
- In a sample of *hospital patients*, there is a negative dependency patients who don't have diabetes are *more likely* to have lung cancer.

Selection Bias



- ullet Lung cancer L and diabetes D cause hospitalization H
- ullet By taking participants from a hospital we *condition* on hospitalization (H=1)
- If you are hospitalised, and you don't have diabetes, probably you do have lung cancer (Otherwise why would you be in hospital?).
- $P(D|L = 1, H = 1) \neq P(D|do(L) = 1)$
- We have conditioned on a *collider*

Collider Bias

