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Why should you care?

» The traditional VAR(1) model is badly suited for the combination of ESM data
and dynamical network analysis
» Model parameters vary depending on the time-interval between measurements
» The sign, size and relative ordering of effects can all change based on a (somewhat
arbitrary) methodological choice
» The Continuous-Time VAR(1) model is a very appealing alternative
» Overcomes the problem of time-interval dependency
> Lets us model how lagged effects change with the time-interval
» Matches closer with our substantive ideas about what psychological processes are



Dynamical networks and the VAR(1) model
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The role of time-interval
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Implications for Dynamical Network Structure
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From discrete-time to continuous-time




rom discrete-time to continuous-time

o 00—

n HEGEEEo)

o HAleelew)— =




Iscrete-time to ¢

e

3! (((((@‘ 51
’

“mw A Cl
















By
50 %(ééée‘{((@ s

L
¥l

T
o

e
A




Time-interval dependency of VAR estimates
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Network structure as a function of lag
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From the Why to the How: Estimation

» CT VAR(1) model is based on a first-order differential equation

» Boker, Oud, Voelkle and many others have argued for these models in psychology
» Many exciting estimation possibilities
» ctsem - Driver, Voekle, Oud
GLLA and LDE through OpenMx - Boker and colleagues
BHOU - Oravecz and colleagues
Indirect estimation (using DSEM in Mplus)*
Extended Multi-level CT models - Rebecca Kuiper *
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Further Implications/Discussion

» Problem is not just with VAR(1) parameter estimates but also their
interpretation

» @ parameters are not direct links in the intuitive sense
» How do we find “the" network structure

» Drift matrix directly vs summary measures based on eA4t
» Centrality measures

» Adapt existing or make new ones
» Clarify their interpretation / substantive importance



Get in Touch

» http://dml.sites.uu.nl/

» o.ryan@uu.nl



Continuous Time Model

First-Order Stochastic Differential Equation

dY(t) dW (t)
e A(Y(t) — p) Y

CT VAR(1) Model

Y(t) = eA2tY (t — At) + w(At)



Numerical Example
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Application to Empirical Data

» N=1 Experience Sampling Data
» Geschwind et al. (2011)
» 115 repeated measurements

» Perceived Unpleasantness (PU)
» Worry (W)

> Relaxation (Re)

—2.423 0.177 —0.200
A= | 1.140 -—-2.445 -1.964
—0.616 0.204

—0.884



Results Empirical Data
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