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Descriptive / Exploratory Tools

▶ Autocorrelation function (ACF)

▶ Cross-Correlation function (CCF)

Models such as (V)ARIMA

AR(1), AR(2), VAR(p)

ACF & CCF to check / find
appropriate model
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Descriptive / Exploratory Tools

▶ Autocorrelation function (ACF)

▶ Cross-Correlation function (CCF)

Models such as (V)ARIMA

▶ AR(1), AR(2), VAR(p)

▶ ACF & CCF to check / find
appropriate model
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Assumption: Equally Spaced Measurements
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Reality: Irregularly Spaced Measurements
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Empirical data
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CF estimation: Equally Spaced
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CF estimation: Unequally Spaced
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Continuous-Time Modeling

So far, people often suggest using Continuous-Time models

dY (t)

dt
= A Y (t) + G

dW (t)

dt

In auto-regressive form, this looks like a VAR(1) model

Y (t +∆t) = eA∆tY (t) + ϵ(∆t)

Auto- and cross-regressions are a specific non-linear function (matrix exponential e)
of the time-interval between measurements ∆t.

▶ This model can be estimated, e.g., using the ctsem package (Driver et al. 2017)



ctsem estimation: unequally spaced

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Autocorrelation

Time−Interval

E
ffe

ct
 S

iz
e

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Cross−correlation

Time−Interval

E
ffe

ct
 S

iz
e

True
ctsem
95% quantiles



Problem: Model Misspecification

With a CT model, the auto- and cross- relations are derived based on the estimated
drift matrix A.

▶ Model-based estimate. Not (entirely) data-driven / exploratory

But this will only match reality if the (simple, low-D, linear) model is correctly
specified.

▶ If the order of the model (first vs second) is wrong, or if we have unobserved
confounding these will be incorrect
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ctsem estimation: model misspecified
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Traditional ACF and CCF estimation:

▶ Data-driven and exploratory (relatively model-free) method for exploring
dynamic features

▶ Does not perform well with irregularly spaced data

CT model estimation:

▶ Can be estimated from irregularly spaced data and in principle capture non-linear
patterns of correlations

▶ But relies on unrealistic assumption of correct model specification, which likely
never holds in practice

▶ Kicker: without a data-driven way of computing correlations, no way to check the
model misspecification



expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

▶ Development version available github: ryanoisin/expct

Two-step procedure

1. Create a “stacked” data frame: Every observation acts as a predictor for every
future observation, with the time-interval ∆t as additional variable

Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and
cross-correlations

Auto and cross-correlation functions are estimated for arbitrary ∆t by fitting seperate
bivariate GAMMs. In this way we approximate

cor(Yt ,Yt+∆t) = f (∆t)

https://github.com/ryanoisin/expct/
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expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

▶ Development version available github: ryanoisin/expct

Two-step procedure

1. Create a “stacked” data frame: Every observation acts as a predictor for every
future observation, with the time-interval ∆t as additional variable

2. Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and
cross-correlations

Y = f (∆t)X + ϵ
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expct estimation: unequally spaced

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Autocorrelation

Time−Interval

E
ffe

ct
 S

iz
e

0 5 10 15 20 25 30

−
1.

0
0.

0
0.

5
1.

0

Cross−correlation

Time−Interval

E
ffe

ct
 S

iz
e

True
expct
95% quantiles



Simulation Study

Time-series length: [ 100, 500, 2000 ]
Sampling Scheme: [ Equal, “ESM” bimodal, Uniform ]
Data-generating models: [ AR(1), Bivariate Oscillating, Misspecified ]

We also compared a number of different methods for computing confidence intervals:

▶ Point-wise, Simultaneous, Simultaneous + large lag error correction, Bootstrap

We use “function-wide” averages to compute bias, coverage, etc.
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Future work

In principle this method can be used in other situations than those studied here

▶ Systems of variables measured at different timescales (e.g., daily diary vs hourly
ratings vs minute-to-minute physiological measurements)

▶ Multi-subject low T data common in social sciences, if we assume shared ACF
and CCF

Extensions TBD:

▶ Multi-level multi-subject data (random effects, work underway)

▶ Partial relationships (PACF, PCCF)

▶ Empirical Examples



Extracting Dynamic Features from Irregularly Spaced Time Series

expct: Exploratory continuous-time modeling

▶ Available as an R package github: ryanoisin/expct

▶ Overcomes equal-interval limitation of traditional ACF/CCF estimation
▶ Avoids reliance on correct lagged model specification in confirmatory

continuous-time models
▶ ctsem, dynr

▶ GAMM-based, unbiased, good coverage with novel llci method

Ryan O., Wu, K., & Jacobson, N.K. (in preperation). Exploratory Continuous-Time Modeling (expct):
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