Exploratory Continuous-Time Modeling *expct*:

Extracting Dynamic Features from Irregularly Spaced Time Series

Oisín Ryan¹, Kejin Wu², Nicholas C. Jacobson³

¹Department of Methodology and Statistics, Utrecht University, NL ²Department of Mathematics, University of California, San Diego ³Departments of Biomedical Data Science, Psychiatry, and Computer Science, Dartmouth College

CMstatistics 2022

Descriptive / Exploratory Tools

- Autocorrelation function (ACF)
- Cross-Correlation function (CCF)

Υ

*Y*1 *Y*2 *Y*3 *Y*4 *Y*5 *Y*6 *Y*7 *Y*8 ...

Ут

Y	Y at	: lag 1
---	------	---------

<i>Y</i> 1	
<i>Y</i> ₂	y_1
<i>Y</i> 3	<i>y</i> ₂
<i>Y</i> 4	<i>y</i> 3
<i>Y</i> 5	<i>Y</i> 4
<i>Y</i> 6	<i>y</i> 5
Ут	<i>Y</i> 6
<i>y</i> 8	У7
Ут	y_{T-1}
	Ут

Y	Y at lag 1	Y at lag 2
<i>y</i> 1		
<i>Y</i> ₂	<i>Y</i> 1	
<i>Y</i> 3	У2	<i>Y</i> 1
<i>Y</i> 4	У3	<i>y</i> 2
<i>Y</i> 5	У4	<i>У</i> з
<i>У</i> 6	<i>Y</i> 5	<i>Y</i> 4
У7	У6	<i>y</i> 5
<i>Y</i> 8	Ут	<i>У</i> 6
Ут	y_{T-1}	<i>У</i> Т-2
	Ут	$y_{\mathcal{T}-1}$
		Ут

Υ	Y at lag 1	1 Y at lag 2	
<i>Y</i> 1			
<i>y</i> ₂	y_1		
<i>y</i> 3	У2	y_1	
<i>Y</i> 4	Уз	<i>y</i> 2	
<i>Y</i> 5	<i>Y</i> 4	<i>y</i> 3	
<i>Y</i> 6	<i>Y</i> 5	<i>Y</i> 4	
Ут	<i>У</i> 6	<i>Y</i> 5	
<i>y</i> ₈	Ут	<i>У</i> 6	
• • •			
Ут	y_{T-1}	<i>У</i> Т-2	
	Ут	$y_{\mathcal{T}-1}$	
		Ут	

Υ	Y at lag 1	Y at lag 2	
<i>y</i> ₁			
<i>Y</i> ₂	y_1		
<i>y</i> 3	<i>Y</i> 2	<i>Y</i> 1	
<i>Y</i> 4	Уз	<i>y</i> 2	
<i>Y</i> 5	<i>Y</i> 4	<i>y</i> 3	
У6	<i>У</i> 5	<i>Y</i> 4	
У7	У6	<i>Y</i> 5	
<i>y</i> 8	Ут	У6	
•••			
Ут	$y_{\mathcal{T}-1}$	<i>У</i> Т—2	
	Ут	$y_{\mathcal{T}-1}$	
		Ут	

Descriptive / Exploratory Tools

- Autocorrelation function (ACF)
- Cross-Correlation function (CCF)

Models such as (V)ARIMA

- AR(1), AR(2), VAR(p)
- ACF & CCF to check / find appropriate model

Assumption: Equally Spaced Measurements

Time

Reality: Irregularly Spaced Measurements

Time

Reality: Irregularly Spaced Measurements

Time

Empirical data

Ryan & Hamaker (2022); Kossakowski, Groot, Haslbeck, Borsboom & Wichers (2017)

CF estimation: Equally Spaced

CF estimation: Unequally Spaced

Continuous-Time Modeling

So far, people often suggest using **Continuous-Time** models

$$rac{doldsymbol{Y}(t)}{dt} = oldsymbol{A}oldsymbol{Y}(t) + oldsymbol{G}rac{doldsymbol{W}(t)}{dt}$$

In auto-regressive form, this looks like a VAR(1) model

$$oldsymbol{Y}(t+\Delta t) = \mathbf{e}^{oldsymbol{A} \Delta t} oldsymbol{Y}(t) + \epsilon(\Delta t)$$

Auto- and cross-regressions are a specific **non-linear** function (matrix exponential e) of the time-interval between measurements Δt .

▶ This model can be estimated, e.g., using the *ctsem* package (Driver et al. 2017)

ctsem estimation: unequally spaced

Problem: Model Misspecification

With a CT model, the auto- and cross- relations are **derived** based on the estimated drift matrix A.

Model-based estimate. Not (entirely) data-driven / exploratory

But this will only match **reality** if the (simple, low-D, linear) model is **correctly specified**.

If the order of the model (first vs second) is wrong, or if we have unobserved confounding these will be incorrect

ctsem estimation: model misspecified

Traditional ACF and CCF estimation:

- Data-driven and exploratory (relatively model-free) method for exploring dynamic features
- Does not perform well with irregularly spaced data

CT model estimation:

- Can be estimated from irregularly spaced data and in principle capture non-linear patterns of correlations
- But relies on unrealistic assumption of correct model specification, which likely never holds in practice
- Kicker: without a data-driven way of computing correlations, no way to check the model misspecification

expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

Development version available github: ryanoisin/expct

Two-step procedure

1. Create a "stacked" data frame: Every observation acts as a predictor for every future observation, with the time-interval Δt as additional variable

Y	Y at lag 1	Y at lag 2
<i>y</i> 1		
<i>Y</i> ₂	<i>Y</i> 1	
<i>Y</i> 3	У2	<i>Y</i> 1
<i>Y</i> 4	У3	<i>y</i> 2
<i>Y</i> 5	У4	<i>У</i> з
<i>У</i> 6	<i>Y</i> 5	<i>Y</i> 4
<i>У</i> 7	У6	<i>y</i> 5
<i>Y</i> 8	Ут	<i>У</i> 6
Ут	y_{T-1}	<i>У</i> Т-2
	Ут	$y_{\mathcal{T}-1}$
		Ут

Y	Time stamp		
<i>y</i> ₁	0		
<i>Y</i> 2	Δs_1		
<i>Y</i> 3	Δs_2		
<i>Y</i> 4	Δs_3		
<i>Y</i> 5	Δs_4		
У6	Δs_5		
<i>У</i> 7	Δs_6		
<i>Y</i> 8	Δs_7		
Ут	Δs_T		

			Х	Y	Time diff ∆t
		I	 y1	y ₂	Δs_1
Υ	Time stamp	I	y 1	y 3	Δs_2
.,	0		y 1	y 4	Δs_3
y 1	0		y 1	y 5	Δs_4
y 2	Δs_1		y 1	y 6	Δs_5
y 3	Δs_2		y 1	y 7	Δs_6
y 4	Δs_3		y 1	y 8	Δs_7
y 5	Δs_4				••••
y 6	Δs_5		V 1	Ут	Δs_{T}
y 7	Δs_6				
y 8	Δs_7		y 2	y 3	$\Delta s_2 - \Delta s_1$
			y 2	y 4	∆s ₃ -∆s ₁
Ут	Δs_T		y 2	y 5	$\Delta s_4 - \Delta s_1$
		:	y ₂	y 6	$\Delta s_5 - \Delta s_1$
			y ₂	y 7	$\Delta s_6 - \Delta s_1$
					:

expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

Development version available github: ryanoisin/expct

Two-step procedure

- 1. Create a "stacked" data frame: Every observation acts as a predictor for every future observation, with the time-interval Δt as additional variable
- 2. Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and cross-correlations

 $Y = f(\Delta t)X + \epsilon$

expct: Exploratory Continuous Time Modeling

Estimate ACF and CCF functions from data taken with any arbitrary sampling scheme

Development version available github: ryanoisin/expct

Two-step procedure

- 1. Create a "stacked" data frame: Every observation acts as a predictor for every future observation, with the time-interval Δt as additional variable
- 2. Use a Generalized Additive Mixed Models (GAMM) to estimate auto- and cross-correlations

 $Y = f(\Delta t)X + \epsilon$

Auto and cross-correlation functions are estimated for arbitrary Δt by fitting seperate bivariate GAMMs. In this way we approximate

$$cor(Y_t, Y_{t+\Delta t}) = f(\Delta t)$$

expct estimation: unequally spaced

Simulation Study

Time-series length: [100, 500, 2000] Sampling Scheme: [Equal, "ESM" bimodal, Uniform] Data-generating models: [AR(1), Bivariate Oscillating, Misspecified]

We also compared a number of different methods for computing confidence intervals:

▶ Point-wise, Simultaneous, Simultaneous + large lag error correction, Bootstrap

We use "function-wide" averages to compute bias, coverage, etc.

Future work

In principle this method can be used in other situations than those studied here

- Systems of variables measured at different timescales (e.g., daily diary vs hourly ratings vs minute-to-minute physiological measurements)
- Multi-subject low T data common in social sciences, if we assume shared ACF and CCF

Extensions TBD:

- Multi-level multi-subject data (random effects, work underway)
- Partial relationships (PACF, PCCF)
- Empirical Examples

Extracting Dynamic Features from Irregularly Spaced Time Series

expct: Exploratory continuous-time modeling

- Available as an R package github: ryanoisin/expct
- Overcomes equal-interval limitation of traditional ACF/CCF estimation
- Avoids reliance on correct lagged model specification in confirmatory continuous-time models
 - ctsem, dynr
- GAMM-based, unbiased, good coverage with novel llci method

Ryan O., Wu, K., & Jacobson, N.K. (in preperation). Exploratory Continuous-Time Modeling (expct): Extracting Dynamic Features from Irregularly Spaced Time Series

o.ryan@uu.nl | oisinryan.org