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Context: Discrete-Time VAR(1) Model
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» VAR(1) often applied in ESM settings in psychology

> Interpretation of @ as Direct Causal Effects
» Assumptions
» Evenly spaced observations
Linearity of relationships

»
» Stable structure over time-window of observations
» No unobserved confounders
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Summary |l

» Discrete-Time VAR(1) - misleading conclusions regarding causal structure even
in ideal settings
» The Continuous-Time VAR(1) model is an appealing alternative

» Suggested by many authors, notably Voelkle, Oud and colleagues (2012), and Boker

(2002)
» Alternative calculations of direct, indirect and total effects in a mediation context

(Aalen et al. 2008; Deboeck & Preacher, 2015)

» Defining these path effects in terms of hypothetical experiments clarifies what
our target of inference is (Rubin, Pearl, Robins and others)

» DT and CT “direct” effects describe different interventions
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The role of time-interval (cf. Gollob & Reichardt, 1987; Cole & Maxwell, 2003)

Y, =0(At=1)Y,._1+e€;

AO P11 AZ
$21
$31
12
SO $22 SZ
32
$13
$23
CO ¢33 Cz




The role of time-interval (cf. Gollob & Reichardt, 1987; Cole & Maxwell, 2003)

Y, =0(At=1)Y,._1+e€;

Ao Az
SO SZ
Co C,
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From discrete-time to continuous-time




rom discrete-time to continuous-time
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The Continuous- Time VAR(1) Model




The Continuous-Time VAR(1) Model
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dY(t)
dt

dW(t)
dt

=AY (t) - p) +~

Assuming that processes:
1. take on some value at all points in
time
2. exert influence on one another at all
points In time
3. are smooth and differentiable
See Boker (2002) amongst others



CT—VAR(].) and Paths (Debeock & Preacher, 2015; Aalen et al. 2008)

Y. =Y, | te Y, =0(At=2)Y, 1 +e€




CT—VAR(].) and Paths (Debeock & Preacher, 2015; Aalen et al. 2008)

Y, =e Yy, _

Y, =0(At=2)Y, 1 +¢

L ‘((‘((((((® :

“ (((‘(‘(‘(‘(‘(‘@




CT—VAR(].) and Paths (Debeock & Preacher, 2015; Aalen et al. 2008)
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Direct Effects and Interventions
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Direct Effects and Interventions
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Direct Effects and Interventions

DT “Direct Effect” Il = ¢11¢31 + ¢31¢33 [(At = 1)]
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Direct Effects and Interventions
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Direct Effects and Interventions

CT “Direct Effect” =0

Trajectories over time
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Conclusion

» Psychological processes are likely to evolve continuously over time

» “Direct effects” in DT VAR(1) models reflect specific interventions on acute
values of the mediator

» Generally doesn't match up with substantive interpretation - e.g. independent flow
of information in networks
» The causal idea that best matches this is the interval intervention

» We have shown equivalency between this interventionist definition and path-tracing
approaches (Deboeck & Preacher, 2015)
» Calculation of direct effects generalises beyond simple mediation model



In progress

> Indirect effects less straightforward - requires variable-splitting notion - Robins
(2003)

» Not all path specific effects identifiable - " recanting witness”; Avin, Shpitser & Pearl
(2005)

» Centrality measures based on CT dynamical networks



Get in Touch

» http://dml.sites.uu.nl/

» o.ryan@uu.nl



Time-interval dependency of VAR estimates
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Network structure as a function of lag
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CT Direct Effect Network structure as a function of lag
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Estimation

v

ctsem - Driver, Voelkle, Oud

GLLA and LDE through OpenMx - Boker and colleagues
BHQOU - Oravecz and colleagues

Indirect estimation (using DSEM in Mplus)*

Extended Multi-level CT models - Rebecca Kuiper *

v

v

v
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Continuous Time Model

First-Order Stochastic Differential Equation

dY(t) dW (t)
e A(Y(t) — p) Y

CT VAR(1) Model

Y(t) = eA2tY (t — At) + w(At)



Numerical Example Network
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Direct effect example
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Proof equivalence of path and variable setting

Deboeck & Preacher suggest finding direct effects by disabling paths in the v x v drift
matrix A before applying the matrix exponential term.

Take S to be an intervention matrix; equivalent to an identity matrix with one
diagonal element set to zero. E.g., if we are interested in an intervention on M, let
S = diag(1,0,1).

S is nilpotent, thus §.5 =8

Setting the initial end final values of M in the interval to zero, this definition of the

direct effect is
S eS.A.SAt S



Proof 1

It suffices to show that
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