Mediation and Causal Mechanisms: A Continuous-Time Approach

Oisín Ryan \& Ellen Hamaker
Department of Methodology and Statistics, Utrecht University

Longitudinal Mediation

Cole \& Maxwell $(2003,2007)$

Longitudinal Mediation

Cole \& Maxwell $(2003,2007)$

Longitudinal Mediation

Cole \& Maxwell $(2003,2007)$

The Discrete-Time VAR(1) model

$$
\boldsymbol{Z}_{\tau}=\boldsymbol{\Phi} \boldsymbol{Z}_{\tau-1}+\boldsymbol{\epsilon}_{\tau}
$$

- Cross-Lagged Panel Model (CLPM; Cole \& Maxwell, 2003) or First-Order Vector Auto-regressive (VAR(1); Hamilton (1994)) model
- Characterized as a Discrete-Time model; time is accounted w.r.t the order of measurement only

The Discrete-Time VAR(1) model

$$
Z_{\tau}=\Phi Z_{\tau-1}+\boldsymbol{\epsilon}_{\tau}
$$

- Cross-Lagged Panel Model (CLPM; Cole \& Maxwell, 2003) or First-Order Vector Auto-regressive (VAR(1); Hamilton (1994)) model
- Characterized as a Discrete-Time model; time is accounted w.r.t the order of measurement only

Causal Interpretation of path-specific effects

Interventionist Causal Framework (Pearl, Rubin, Robins amongst others)

- Causal effects \rightarrow interventions on variables in our model
- Effects of (possibly hypothetical) experiments
- If certain assumptions hold, we can identify the effect of an intervention without necessarily performing that experiment
- Once we can make these assumptions explicit we can explore whether they are realistic or not

Controlled Direct Effect (VanDerWeele 2015)

$\mathbf{C D E}=E\left(Y_{2} \mid X_{0}=1, M_{1}=0\right) \quad-\quad E\left(Y_{2} \mid X_{0}=0, M_{1}=0\right)$

Controlled Direct Effect (VanDerWeele 2015)
$\mathbf{C D E}=E\left(Y_{2} \mid X_{0}=1, M_{1}=0\right) \quad-\quad E\left(Y_{2} \mid X_{0}=0, M_{1}=0\right)$

Controlled Direct Effect (VanDerWeele 2015)
$\mathbf{C D E}=E\left(Y_{2} \mid X_{0}=1, M_{1}=0\right) \quad-\quad E\left(Y_{2} \mid X_{0}=0, M_{1}=0\right)$

Controlled Direct Effect (VanDerWeele 2015)
$\mathbf{C D E}=E\left(Y_{2} \mid X_{0}=1, M_{1}=0\right) \quad-\quad E\left(Y_{2} \mid X_{0}=0, M_{1}=0\right)$

Assumptions needed

- No unobserved common cause of X and Y at any occassion(s) τ
- No unobserved common cause of M and Y at any occassions(s) τ

Assumptions needed

- No unobserved common cause of X and Y at any occassion(s) τ
- No unobserved common cause of M and Y at any occassions(s) τ

Using $\boldsymbol{\Phi}$ the CDE equals path-tracing direct effect of X_{0} on Y_{2}

An alternative dynamical model

- DT models unrealistic
- Psychological variables (e.g. Stress, Affect) do not evolve in discrete steps
- Vary in a continuous manner over time (Boker 2001)

An alternative dynamical model

- DT models unrealistic
- Psychological variables (e.g. Stress, Affect) do not evolve in discrete steps
- Vary in a continuous manner over time (Boker 2001)

An alternative dynamical model

- DT models unrealistic
- Psychological variables (e.g. Stress, Affect) do not evolve in discrete steps
- Vary in a continuous manner over time (Boker 2001)
- Processes influence one another continuously over time

An alternative dynamical model

- DT models unrealistic
- Psychological variables (e.g. Stress, Affect) do not evolve in discrete steps
- Vary in a continuous manner over time (Boker 2001)
- Processes influence one another continuously over time

An alternative dynamical model

Continuous-Time VAR(1) Model

Based on a first-order differential equation (Boker et al., 2010, Voelkle, Oud et al., 2012, Oravecz et al., 2009).

$$
\begin{equation*}
\boldsymbol{e}^{\boldsymbol{A} \Delta t}=\boldsymbol{\Phi} \tag{1}
\end{equation*}
$$

Deboeck \& Preacher (2016) - CT-VAR(1) for mediation

Interventions and CT

Interventions and CT processes

$$
C D E=E\left(Y_{2} \mid X_{0}=1, M_{1}=0\right)-E\left(Y_{2} \mid X_{0}=0, M_{1}=0\right)
$$

Interventions and CT processes

Acute Intervention

Interventions and CT processes

Interval Intervention

An alternative dynamical model

Summary

- Mediation is a fundamentally causal concept
- The interventionist framework helps us to make explicit what path-specific effects mean
- CT models help in specifying and exploring different types of interventions

E-mail: o.ryan@uu.nl

Key References

- Aalen, O. O., Rysland, K., Gran, J. M., \& Ledergerber, B. (2012). Causality, mediation and time: a dynamic viewpoint. Journal of the Royal Statistical Society: Series A (Statistics in Society), 175(4), 831-861.
- Boker, S.M. (2001) Consequences of continuity: The hunt for intrinsic properties within parameters of dynamics in psychological processes Multivariate Behavioral Research, 37(3), 405-422
- Boker, S. M., Montpetit, M. A., Hunter, M. D., \& Bergeman, C. S. (2010). Modeling resilience with differential equations. In Learning and Development: Individual Pathways of Change. Washington, DC: American Psychological Association, 183-206.
- Cole, D. A., \& Maxwell, S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. Journal of abnormal psychology, 112(4), 558-577.
- Deboeck, P. R., \& Preacher, K. J. (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23(1), 61-75.
- Hamaker, E. L., Dolan, C. V., \& Molenaar, P. C. (2005). Statistical modeling of the individual: Rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40(2), 207-233.
- Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton university press.

Key References

- Maxwell, S. E., \& Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological methods, 12(1)
- Oravecz, Z., Tuerlinckx, F., \& Vandekerckhove, J. (2009). A hierarchical OrnsteinUhlenbeck model for continuous repeated measurement data. Psychometrika, 74(3), 395-418.
- Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669-688.
- Robins, J. M., Hernan, M. A., \& Brumback, B. (2000). Marginal structural models and causal inference in Epidemiology.Epidemiology, 11, 550560.
- Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of educational Psychology, 66(5), 688.
- Voelkle, M. C., Oud, J. H., Davidov, E., \& Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: relating authoritarianism and anomia. Psychological methods, 17(2), 176.
- VanderWeele T.J. (2015) Mediation analysis with time-varying exposures and mediators. In Explanation in causal inference: methods for mediation and interaction (pp.153-168). Oxford: Oxford University Press.

Proof equivalence of path and variable setting

Deboeck \& Preacher suggest finding direct effects by disabling paths in the $v \times v$ drift matrix \boldsymbol{A} before applying the matrix exponential term.

Take \boldsymbol{S} to be an intervention matrix; equivalent to an identity matrix with one diagonal element set to zero. E.g., if we are interested in an intervention on M, let $\boldsymbol{S}=\operatorname{diag}(1,0,1)$.
\boldsymbol{S} is nilpotent, thus $\boldsymbol{S} . \boldsymbol{S}=\boldsymbol{S}$
Setting the initial end final values of M in the interval to zero, this definition of the direct effect is

$$
S . e^{S . A . S \Delta t} . S
$$

Proof 1

It suffices to show that

$$
\begin{align*}
& S . e^{S . A . S \Delta t} . S=\lim _{k \rightarrow \infty}\left(S . e^{A \Delta t / k} . S\right)^{k} \tag{2}\\
& \text { S. } e^{S . A . S \Delta t} . S \\
& \text { S.I.S }+ \text { S.A.S } \Delta t+\frac{\boldsymbol{S . A . \boldsymbol { S } ^ { 2 } (\Delta t) ^ { 2 }}}{2!}+\ldots \\
& \lim _{n \rightarrow \infty}\left(\boldsymbol{S . I . S}+\frac{\boldsymbol{S . A . S \Delta t}}{n}\right)^{n} \\
& \lim _{k \rightarrow \infty}\left(\boldsymbol{S} . \boldsymbol{e}^{\boldsymbol{A \Delta t / k}} . \boldsymbol{S}\right)^{k} \\
& \text { As } k \rightarrow \infty \\
& \boldsymbol{e}^{\boldsymbol{A} \Delta t / k} \rightarrow \boldsymbol{I}+\frac{\boldsymbol{A} \Delta t}{k} \\
& \lim _{k \rightarrow \infty}\left(\boldsymbol{S}\left(\boldsymbol{I}+\frac{\boldsymbol{A} \Delta t}{k}\right) \boldsymbol{S}\right)^{k} \\
& \lim _{n \rightarrow \infty}\left(\text { S.I.S }+\frac{\text { S.A.S } \Delta t}{n}\right)^{n}
\end{align*}
$$

Continuous Time Model

First-Order Stochastic Differential Equation

$$
\frac{d \boldsymbol{Z}(t)}{d t}=\boldsymbol{A}(\boldsymbol{Z}(t)-\boldsymbol{\mu})+\boldsymbol{\gamma} \frac{d \boldsymbol{W}(t)}{d t}
$$

CT VAR(1) Model

$$
\boldsymbol{Z}(t)=\boldsymbol{e}^{\boldsymbol{A} \Delta t} \boldsymbol{Z}(t-\Delta t)+\boldsymbol{w}(\Delta t)
$$

Application to Empirical Data

- $\mathrm{N}=1$ Experience Sampling Data
- Geschwind et al. (2011)
- 115 repeated measurements
- Perceived Unpleasantness (PU)
- Worry (W)
- Relaxation (Re)

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
-2.423 & 0.177 & -0.200 \\
1.140 & -2.445 & -1.964 \\
-0.616 & 0.204 & -0.884
\end{array}\right]
$$

Results Empirical Data

Results - DT Network

Results - DT Network

Indirect, Direct and Total Effects

Continuous Time Framework

$$
\begin{aligned}
\boldsymbol{\Phi}\left(\Delta t_{\tau}\right) & =\left[\begin{array}{ccc}
\phi_{11} & 0 & 0 \\
0 & \phi_{22} & 0 \\
D E & 0 & \phi_{33}
\end{array}\right] \\
\boldsymbol{A} & =\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
a_{31} & 0 & a_{33}
\end{array}\right]
\end{aligned}
$$

Indirect, Direct and Total Effects

Continuous Time Framework

$$
\begin{aligned}
\boldsymbol{\Phi}\left(\Delta t_{\tau}\right) & =\left[\begin{array}{ccc}
\phi_{11} & 0 & 0 \\
\phi_{21} & \phi_{22} & 0 \\
I E & \phi_{32} & \phi_{33}
\end{array}\right] \\
\boldsymbol{A} & =\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
0 & a_{32} & a_{33}
\end{array}\right]
\end{aligned}
$$

