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The Discrete-Time VAR(1) model

Z, =®Z, 1 +e;

» Cross-Lagged Panel Model (CLPM; Cole & Maxwell, 2003) or
First-Order Vector Auto-regressive (VAR(1); Hamilton
(1994)) model

» Characterized as a Discrete-Time model; time is accounted
w.r.t the order of measurement only
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Causal Interpretation of path-specific effects

Interventionist Causal Framework (Pearl, Rubin, Robins amongst
others)

> Causal effects — interventions on variables in our model
» Effects of (possibly hypothetical) experiments

» If certain assumptions hold, we can identify the effect of an
intervention without necessarily performing that experiment

» Once we can make these assumptions explicit we can explore
whether they are realistic or not



Controlled Direct Effect (VanDerWeele 2015)
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Assumptions needed

» No unobserved common cause of X and Y at any
occassion(s) T
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Using @ the CDE equals path-tracing direct effect of Xy on Y»



An alternative dynamical model

» DT models unrealistic

» Psychological variables (e.g.
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An alternative dynamical model

Continuous-Time VAR(1) Model

Based on a first-order differential equation (Boker et al., 2010,
Voelkle, Oud et al., 2012, Oravecz et al., 2009).

eAAt — ¢ (1)

Deboeck & Preacher (2016) - CT-VAR(1) for mediation
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Interventions and CT processes

A @r
il

Y, (((((@ Y




Interventions and CT processes

Acute Intervention
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An alternative dynamical model




Summary

» Mediation is a fundamentally causal concept

» The interventionist framework helps us to make explicit what
path-specific effects mean

» CT models help in specifying and exploring different types of
Interventions
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Proof equivalence of path and variable setting

Deboeck & Preacher suggest finding direct effects by disabling
paths in the v x v drift matrix A before applying the matrix
exponential term.

Take S to be an intervention matrix; equivalent to an identity
matrix with one diagonal element set to zero. E.g., if we are
interested in an intervention on M, let S = diag(1,0,1).

S is nilpotent, thus §.5 =S

Setting the initial end final values of M in the interval to zero, this
definition of the direct effect is

S.es'A'SAt.S



Proof 1

It suffices to show that
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Continuous Time Model

First-Order Stochastic Differential Equation

dZ(t)
dt

dW(t)
dt

= A(Z(t) —p) +

CT VAR(1) Model

Z(t) = eABtZ(t — At) + w(At)




Application to Empirical Data

» N=1 Experience Sampling Data
» Geschwind et al. (2011)

> 115 repeated measurements

» Perceived Unpleasantness (PU)
» Worry (W)
> Relaxation (Re)

—2.423 0.177 —0.200
A= 1140 —2.445 —-1.964
—-0.616 0.204 —0.884



Results Empirical Data

0

2

Time-tteral (trs)

2

Time-teral ()

2

Time-teral ()

]




Results - DT Network

Time-Interval = 1hr




Results - DT Network
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Indirect, Direct and Total Effects

Continuous Time Framework
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Indirect, Direct and Total Effects

Continuous Time Framework
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