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Determining the Number of Modes
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Two steps:

1. Get (Gaussian) kernel-density estimate (black curve)

2. Count roots; M = w



Determining Skewness

Symmetric Light skew
Skewness = 0.02 Skewness = 0.65
‘Medium' skew Heavy skew

Skewness = 0.99 Skewness = 2.68

To get an overview, we use a conservative cutoff:
> Skew <
> Skew >

: Symmetric

: Skewed

WIN WIN



Modality & Skewness Results 1/2

Unimodal Unimodal
(symmetric) (skewed)
Rowland et al. (2020)
Items: 8 141% 326%

Subjects: 125

Scale: 0-100

Av Time Points: 173
Measures/Day: 6
Reference: Current

Population: Students

Bringmann et al. (2016)
Items: 6 24.9% 53.5%

Subjects: 95

Scale: 0-100

Av Time Points: 60
Measures/Day: 10
Reference: Current

Population: Clinical

Vrijen et al. (2018)

Items: 4 19.2% 40.9%
Subjects: 138

Scale: 0-100

Av Time Points: 84

Measures/Day: 3

Reference: Retro

Population: Students

Fisher et al. (2017)

foms: 17 40.4% 29.3%
Subjects: 40

Scale: 0-100

Av Time Points: 114

Measures/Day: 4

Reference: Retro

Population: Clinical
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Modality & Skewness Results 2/2

Unimodal Unimodal
(symmetric) (skewed)
Bringmann et al. (2013)
Items: 5 321% 491%

Subjects: 130

Scale: 1-7

Av Time Points: 89
Measures/Day: 10
Reference: Current

Population: Clinical

Fried et al. (2021)
Items: 9 31.6% 68.2%

Subjects: 79

Scale: 1-5

Av Time Points: 50
Measures/Day: 4
Reference: Retro

Population: Students

Wendt et al. (2020)
Items: 31 20.6% 76.1%

Subjects: 228

Scale: 1-5
Av Time Points: 111
Measures/Day: 3.7

Reference: Current
Population: Clinical

Bimodal
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Implications for Measurement

We have no explanation for how 0-100 scales induce multimodality

» caveat: anchoring, but only present in 2/4, so does not
explain away results

But we have an explanation for how Likert-scales mask
multimodality

If emotion is state-like, 0-100 scales might help pick this up



Implications for Theory

Establish basic phenomena of emotion dynamics which theories
should explain

Multimodality implies:
» Qualitatively different states with varying intensity per state

» Is a feature of many dynamical-systems-inspired accounts of
psychological processes

Large degree of person heterogeneity in distributional forms

» Characterizes patterns of emotion regulation which might map
onto e.g. symptom profiles
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Implications for Time Series Modeling

Empirical Data

o

xxxxxx

xxxxxx

=

oo

1)




Happy

Sad

Implications for Time Series Modeling

Empirical Data Data generated from fitted VAR
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Implications for Time Series Modeling

(V)AR models:

» May not fit the data well
» What to do with VAR then?

> descriptive: extremely useful
> generative: probably misleading

Worth exploring other modeling ideas:
» Descriptives
» Regime switching models
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Abstract

The ability to measure emotional states in daily life using mobile devices has led to a surge of
exciting new research on the temporal evolution of emotions. However, much of the potential of
these data still remains untapped. In this paper, we re-analyze emotion measurements from seven
openly available Experience Sampling Methodology (ESM) studies with a total of 835 individu-
als to systematically investigate the modality (unimodal, bimodal, multimodal) and skewness of
within-person emotion measurements. We show that both multimodality and skewness are highly
prevalent. In addition, we quantify the heterogeneity across items, individuals, and measurement
designs. Our analysis reveals that multimodality is more likely in studies using an analogue slider
scale than in studies using a Likert scale; negatively valenced items are consistently more skewed
than positive valenced items; and longer time series show a higher degree of modality in positive
and a higher skew in negative items. We end by discussing the implications of our results for
theorizing, measurement, and time series modeling.

Preprint: https://psyarxiv.com/qudr6
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In total: 11520 univariate time series

» 835 different individuals, with in total 55 unique emotions

P> A variety of different measurement and design choices

Digging deeper:

>

v

Negatively valenced items consistently more skewed than
positively valenced

Longer time series — more modality in positive items
Longer time series — more skewneess in negative items

In the three studies which measured neuroticism: higher
neuroticism — lower skewness of negatively valenced emotions



Study Design

Studies were quite heterogenous with respect to design choices
» Measurement frequency
» Measurement length
» Item phrasing (current vs retrospective)

» Population (students vs clinical)

With only 7 studies we lack the power to detect design-level
differences
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Average Number of Modes
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Rowland et al. (2020)
Bringmann et al. (2016)
Vrijen et al. (2018)
Fisher et al. (2017)
Bringmann et al. (2013)
Fried et al. (2021)
Wendt et al. (2020)



Skewness
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Bringmann et al. (2016)
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What to make of Heterogeneity?




What to make of Heterogeneity?
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» From statistical perspective: disaster!



What to make of Heterogeneity?
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» From statistical perspective: disaster!

» From science perspective: great!



Disorders & Emotion Dynamics

Disorder = f(Emotion time series)



Disorders & Emotion Dynamics

Disorder = f(Emotion time series)

. so far we explored very little





