Challenges in characterizing psychopathologies as unhealthy dynamic systems

Conference on Complex Systems 2018 Thessaloniki

Oisín Ryan¹ & Jonas Haslbeck²

¹Department of Methodology and Statistics, Utrecht University ²Psychological Methods, University of Amsterdam Psychological Disorders as Dynamic Systems

What's the appeal?

What's the appeal?

- Focus on causal interactions between variables/nodes
- Characterise structure of interactions that lead to pathology

Why a complex dynamical system?

Potentially promising mapping between complex systems concepts and psychological theories

- Bi-stable system
 - Disorder vs no-disorder
- ► Hysteresis
 - Disorder triggered by adverse life-events

Figure: Wichers et al 2018

Theory: Symptom Networks

 Mental disorders arise from direct interactions betweeen symptoms

Unhealthy state: symptoms activated
 Consistent with medical diagnosis

- People prone to disorder have different network structures
 - Move more easily/frequently from healthy to unhealthy state

Figure: Borsboom 2017

Computational Model for Symptom Networks

Ising Model

- Simple proxy model of pairwise interactions
- Positive Manifold
 - Symptoms "mutually activating"
 - (0,1) coding: symptoms not "mutually disactivating"

Computational Model for Symptom Networks

Ising Model

- Simple proxy model of pairwise interactions
- Positive Manifold
 - Symptoms "mutually activating"
 - (0,1) coding: symptoms not "mutually disactivating"
- ► Density → marginal probability of "unhealthy" state
- Pathology as a function of network topology

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls

	A	B	C	D	E	F	G
1	/ 3.45	1.11	-0.91	3.18	-0.88	2.28	2.12
2	1.72	2.14	0.78	0.82	0.36	1.03	1.28
3	0.11	-3.12	1.21	1.80	0.57	0.99	1.32
:	1	1	:	1	:	1	
N-2	-1.29	1.65	4.62	1.74	-0.44	-2.80	3.13
N-1	-0.02	1.54	5.21	1.71	0.04	-0.02	3.00
N	1.18	0.82	1.05	8.77	-0.82	0.05	2.01

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls
- Fit a linear model to the data
 PMRF or VAR

$$P(\mathbf{Y}_{j}=1|\mathbf{Y}_{ackslash j}) \Rightarrow \exp(\hat{oldsymbol{eta}}\,\mathbf{Y}_{ackslash j})$$

$$\mathbf{Y} \sim \mathcal{N}(oldsymbol{\mu}, \mathbf{\Sigma}) \Rightarrow \mathbf{\hat{\Sigma}}^{-1}$$

$$\mathbf{Y}_t = \hat{\mathbf{\Phi}} \, \mathbf{Y}_{t-1} + \mathbf{e}_t$$

Empirical Network Models

- Dataset on psychological constructs related to some pathology
 - Self-report questionnaire
 - Cross-sectional / time-series
 - Unhealthy vs healthy controls
- Fit a linear model to the data
 - PMRF or VAR
- Use estimated parameters to construct a network
 - Compute network metrics
 - Node centrality and Density
 - Look for individual/group differences

What's the problem?

Empirical applications have outpaced theoretical contributions

Theoretical Empirical

NodesSymptoms?DynamicsBi-stable?

Empirical Networks: Nodes

Empirical symptom networks

- Depression (van Borkulo et al 2015)
- Schizophrenia (van Rooijen et al 2018)

Empirical Networks: Nodes

Empirical symptom networks

- Depression (van Borkulo et al 2015)
- Schizophrenia (van Rooijen et al 2018)

Mix of symptoms and non-symptoms

- Self-efficacy (Santos et al 2018)
- Working memory (Hoorelbeke et al 2016)

Figure: Hoorelebeke et al (2016)

Empirical Networks: Nodes

Empirical symptom networks

- Depression (van Borkulo et al 2015)
- Schizophrenia (van Rooijen et al 2018)

Mix of symptoms and non-symptoms

- Self-efficacy (Santos et al 2018)
- Working memory (Hoorelbeke et al 2016)

Pathology networks with no symptoms

- Personality traits (Fonseca Pedrero et al 2018)
- Emotions or mood states (Bringmann et al 2013; Pe et al 2015)

Figure: Bringmann et al. (2013)

Empirical Networks: Dynamics

Time-series data typically fitted using VAR(1) models

$$\mathbf{Y}_t = \mathbf{\Phi} \mathbf{Y}_{t-1} + \mathbf{e}_t$$

Stationarity assumedUni-stable dynamics

Empirical \rightarrow Theoretical?

TheoreticalEmpiricalNodesSymptomsMiscellaneousDynamicsBi-stableUni-stable

Open Problem 1: Mapping from node to disorder

Meaningful characteristics of symptom networks not meaningful in other domains

Symptoms: Density → P(Symptom=On) → Disorder present
 Emotion: Density → ?

Open Problem 1: Mapping from node to disorder

Open Problem 2: Bi-stable systems from Uni-stable models

Theoretical

Empirical

Open Problem 2: Bi-stable systems from Uni-stable models

Open Problem 2: Bi-stable systems from Uni-stable models

Healthy to Disorder Transition

Wichers et al. (2015)

Summary

Thanks for listening!

o.ryan@uu.nl

ryanoisin.github.io

